Année Académique 2019-2020

Matière : Physique Classe : S1G

Exercice 1:

Une boule métallique A possède un excès de 6,0.10⁹ électrons. Une autre boule B, identique géométriquement et physiquement à A, possède un défaut de 4,0.10⁹ électrons. Le système formé par les deux boules est considéré comme étant isolé.

On donne: Charge élémentaire e = 1.6 x 10⁻¹⁹ C.

Constante de la loi de coulomb : K = 9 x 10⁹ S.I

- 1. Calculer, en Coulomb, la charge portée par chacune des deux boules.
- 2. Ces deux sphères sont placées à 20 cm l'une de l'autre.
 - a) La force d'interaction entre elles est-elle répulsive ou attractive ? Justifier la réponse.
 - b) Calculer l'intensité de cette force d'interaction.
- 3. On met ces deux boules en contact puis on les sépare.
 - a) Laquelle des deux boules cède des charges à l'autre ? Justifier la réponse.
 - b) Calculer la nouvelle charge portée par chacune d'elles.

Question 2:

Soit le circuit de la figure ci-contre :

Soit I_1 à I_8 les intensités des courants électriques traversant respectivement les dipôles D_1 à D_8 .

On donne : I_1 = 400 mA, I_2 = 300 mA, I_6 = 150 mA et I_5 = 100 mA (I_5 passe de F à G).

$$|U_{PN}| = 12 \text{ V}, U_{AP} = -2 \text{ V}, U_{AF} = U_{FH} = 4 \text{ V},$$

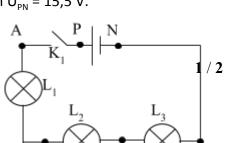
 $|U_{HG}| = 4 \text{ V et } U_{BE} = U_{EC}$

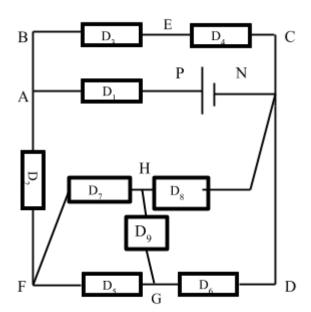
- 1. Déterminer le sens et la valeur des intensités I₃, I₇, I₉ et I₈.
- 2. Calculer U_{BC}.
- 3. Calculer les tensions aux bornes de D₃, D₄, D₈, D₉ et D₅

Question 3:

ans l'association de conducteurs ohmiques du montage ci-contre, les

conducteurs ohmiques utilisés ont pour résistances :


$$_{1}$$
 = 40 Ω , $R_{_{2}}$ = $R_{_{3}}$ = 30 Ω , $R_{_{4}}$ = 60 Ω et $R_{_{5}}$ = 10 Ω .


- 1. Montrer que la valeur de la résistance R_6 du conducteur ohmique (R_6) équivalent au groupement des conducteurs ohmiques (R_1) , (R_2) , (R_3) , (R_4) et (R_5) vaut 30 Ω .
- 2. Sachant que la puissance électrique consommée par le conducteur ohmique de résistance R_5 est P_5 = 3,6 W, calculer I_5 l'intensité du courant électrique dans R_5 .
- 3. Calculer U_{AD}.
- 4. Calculer l'intensité du courant électrique dans chacun des conducteurs ohmiques (R₂), (R₁), (R₄) et (R₃).

Question 4:

On réalise le montage de la figure ci-contre. Les lampes portent les indications suivantes : L_1 (3,5 V), L_2 (8 V), L_3 (8 V) et L_4 (12 V). G est un générateur fournissant entre ses bornes la tension U_{PN} = 15,5 V.

A. On ferme l'interrupteur K_1 tout en gardant l'interrupteur K_2 ouvert.

L₂ et L₃ brillent, L₁ et L₄ ne brillent pas.

- 1. Qu'est ce qui affirme dans la donnée que L₁, malgré qu'elle ne brille pas, n'est pas grillée ? Justifier la réponse.
- 2. On branche un voltmètre aux bornes de L_2 . Il indique une tension de 7,10 V. Donner, en le justifiant, la tension aux bornes de L_1 , L_3 , L_4 , K_1 et K_2 .
- 3. La borne N du générateur est lié à la masse.

Déterminer le potentiel électrique des points N, P, A, B, C, D et E.

B. On ferme l'interrupteur K_2 , l'interrupteur K_1 étant toujours fermé. Le voltmètre aux bornes de L_2 indique 6,00 V.

L₄ va-t-elle briller normalement ? Justifier la réponse.

Bon travail